Isabelle Tutorial:
System, HOL and Proofs

Burkhart Wolff, Makarius Wenzel

Universite Paris-Sud

What we will talk about

What we will talk about

Isabelle with:

Its System Framework

the Logical Framework

the Isabelle/HOL Environment

Proof Contexts and Structured Proof
Tactic Proofs (“apply style”)

The Isabelle
System Framework

Isabelle Architecture

® Modern Isabelle Architecture
consists of 5 identifyable layers

SML layer

Kernel & Proof Object Layer

Tactic Layer and decision procedures
Isar Engine

PIDE Framework and Interface Layer

Isabelle Architecture

* Observation:
Effective parallelization is a PERVASIVE PROBLEM,
that must be addressed

multi-core PolySML

Cl [C2 C3 [C4

Isabelle Architecture

* In detail:

on the execution platform layer

Isabelle Architecture

* In detail:

on the kernel layer —
multi-core PolySML

Cl1

C2

C3

C4

Isabelle Architecture

* In detail:

on layer of procedures and
packages

multi-core PolySML

Cl [C2 C3 [C4

Isabelle Architecture

* In detail:

on the interface layer :>_
PIDE framework + Editor

multi-core PolySML

Cl [C2 C3 [C4

PIDE - GUI - Architecture

(see PIDE - Project: http://bitbucket.org/pide/pide/wiki/Manifesto)

- R S

() src
distribution
u _ server
s = T>Swing installation
e =—libr manager
; brary _ J
~__
ITd.e
| ass — D
domain edit
plugin —p>
LA vm|[SML/
domain view} inte- Scalal< » Scala
lugin gration . : rover
pIUQI | layer inter -— _ inter P
face face
< =

(@D — y

nd.e (Java/ Scala) e.g. Isabelle (SML)

What is Isabelle as a System ?

* A Document Processor

®* .. where documents have a unique name

* ... may acyclicly import documents

* .. and consists of an command sequence

* .. Where new commands may be intro-duced

on the fly (i.e. the system framework is extensible).

* A session (a collection of documents organized in
a hierachy) may be “frozen” to a session (or
configuration)

What is Isabelle as a System ?
* Global View of a “session”

Document / A cmd

\
“TheonyX -
cmd
v
cmd
B [_cmd \4\
i <
cmd
! C Cr?d
cmd cmd
y 3
cmd cm d
! v
cmd cmd

——

D cmd

What is Isabelle as a System ?
* Global View

DocumeL A [omd

“TheonyX
cmd
v
cmd

B

{om detailed view:

v
CIild C L cmd
cmd cmd
y 3
cmd cmd
! !
cmd cmd

e

\

——

D cmd

What is Isabelle as a System ?

* Document “positions” were evaluated to an
implicit state, the theory context ©
Document / A [omd

\
“TheonyX -
cmd
;
cmd
B [omd \\
:)
cmd C L cmd .
. 2 “semantic”’
cmd cmd)
x > evaluation
CTd CIie as SML
cmd cde function

D cmd

What is Isabelle as a System ?

* Document “positions” were evaluated to an
implicit state, the theory context ©

DocumeL A cmd Note;:
“Theony< — stateless command
- evaluation! No-side-

d
— effects apart from “state”

| \ managed by Isabelle !!!
B | cmd)
:)
cmd C cmd X
Y 2 “semantic”
cmd cmd .
x > evaluation
“i‘d Cn;d as SML
cmd cde function

D cmd

What is Isabelle as a System ?

* Document “positions” were evaluated to an

implicit state, the theory context ©

Document /
“TheonyX

B cmd

cmd

cmd

cmd

cmd

et A cmd
3

Note:

emd the theory cgntext |
v ©® can contain a “type signature”
cmd and a “term signature”, “axioms”,
but also system configuration
information etc.
C L ocmd .
‘“ “semantic”
cmd :
- evaluation
CIie as SML
cmd function

(

D cmd

What is Isabelle as a System ?

* Document “positions” were evaluated to an
implicit state, the theory context ©

Document / Note:
“Theor A CI?d ... and this 1s at the
e beginning a minimal
cmd intuitionistic logic called
\ 1n Isabelle/Pure
B | cmd) \
.)
cmd C L ocmd .
: v “semantic”
cmd cmd .
. > evaluation
CTd Eind as SML
=
cmd cmd function

D cmd

What is Isabelle as a System ?
* Example

theory D
imports B C
begin

section{* First Section *}
text{* Some mathematical text: @{text \<alpha>}."}
ML{* fun fac x = if x = 0 then 1 else x*fac(x-1) *}

ML{* fac 10 *}
end

What is Isabelle as a System ?
* Example

‘theory D
imports B C
begin

section{* First Section *}

text{® Some mathematical text: @{text \<alpha>}."}

ML{* fun fac x = if x = 0 then 1 else x*fac(x-1) *}

ML{* fac 10 *}
end

What is Isabelle as a System ?
* Example

‘theory D
imports B C
begin

section{* First Section *}

text{® Some mathematical text: @{text \<alpha>}."}

ML{* fun fac x = if x = 0 then 1 else x*fac(x-1) *}

ML{* fac10 *} . “fac” visible here because the
end M environment 1s part of © !!

Demo 1

* Start Isabelle (via the PIDE jEdit)
* Browse ,, demol.thy"

e Commands:
text, section, subsection
ML

value

a browser for theorems: find__theorems
* Capabilities:

— hovering, jump-link,

Demo 1

® 00 | demol.thy (modified)

| m demol.thy (~fu-psud/fortesse/pub/presentations/2014-14-9-isabelle-tutorial /bu_sol... % | @ | isabelle ol

transcription, so “alpha is just equal to ‘<alpha= but = || | % (X
1ter: ")

can also be written a. - <

demol.thy

, , v demol E

Only in few cases one has to memorize. For them, A

) .) theory demol £

ASCII - oriented shortcuts like = can be given for ==, v section{* My very first experiments *} 3

=1

b subsection{* Thesis *} B

ik » subsection{* Apotheosis *} E'

¥ subsection{* "The Function" in SML *}

~ |subsection{* Apotheosis *} ML{* fun fac n = if n=0 then 1 else n * fac(n-!

ML{* fac 50%}
b subsection{* Using the code-generator to SML *}

w |text{* It may be necessary to get used to the PIDE - Paradigm:
always checking whenever typing. After a while, however,
one gets used to it. Don't forget to save from time to time !!! *}

= |subsection{* "The Function" in SML *}

ML{* fun fac n = if n=0 then 1 else n * fac(n-1) *}
ha ML{* fac SO*}

w |subsection{* Using the code-generator to SML *}

value "(2::nat) + 2"

M Auto update | Update | | Detach | [100% B

val it =
3041405320171337804361260816606475884437764156896051 2000000000000: int

i w -

subsection{* Using the code-generator to SML *}

B ~ Find | Qutput | Sledgehammer Symbols

31,12 (798/909) (isabelle,sidekick, ,UTF-8-Isabelle)

sauoRYL HIDPEPIS

Main
(Editing)
Panel

Demo 1

\

w |subsection{* Us

bsection{* "The Function" in SML *}

fac n = if n=0 then 1 else n * fac(n-1) *}

he code-generator to SML *}

value "(2::nat) + 2"

Detach | |100% v |

™ Auto update | Update | |

val it =
3041405320171337804361260816606475884437764156896051 2000000000000: int

B ~ Find | Qutput | Sledgehammer Symbols

i w -

subsection{* Using the code-generator to SML *}

8 00 " demol.thy (modified) !
| m demol.thy (~fu-psud/fortesse/pub/presentations/2014-14-9-isabelle-tutorial /bu_sol... % | @ | isabelle ol
transcription, so \alpha ises (X
P , s Filter: || | %
can also be writia — o
demol.thy
, , v demol E
Only in W cases one has to memorize. For them, A
) .) theory demol 5
oriented shortcuts like = can be given for ==. v section{* My very first experiments *} E
» subsection{* Thesis #} B
» subsection{* Apotheosis *} E'
¥ subsection{* "The Function" in SML #} -
Fubsection{* Apotheosis *} ML{* fun fac n = if n=0 then 1 else n * fac(n-: %
ML{* fac SO0%} ;
- b subsection{* Using the code-generator to SML *} =
~ Mtext{* It may be necessary to get used to the PIDE - Paradigm:

, , , =
always checking whenever typing. After a while, however, =
bne gets used to it. Don't forget to save from time to time !!! *} %

v

31,12 (798/909)

(isabelle,sidekick, ,UTF-8-Isabelle)

Output
Panel

Demo 1

= |subsection{* "The Function" in SML *}

« |ML{* fac 50*}

w |subsection{* Using the code-generator to SML *}

ML{* fun fac n = if n=0 then 1 else n * fac(n-1) *}

value "(2::nat) +

| Detach |

M Auto update | Update |

3041409320171337804361 26081 66064768844377641568960512000000000000: int

8 00 " demol.thy (modified) !
| m demol.thy (~fu-psud/fortesse/pub/presentations/2014-14-9-isabelle-tutorial /bu_sol... % | @ | isabelle ol
transcription, so “alpha is just equal to ‘<alpha= but = || | % (X
ter: b
can also be written a. — o
demol.thy
, , v demol E
Only in few cases one has to memorize. For them, A
) .) theory demol 5
ASCII - oriented shortcuts like = can be given for ==, v section{* My very first experiments *} E
» subsection{* Thesis #} B
ik » subsection{* Apotheosis *} E'
. ¥ subsection{* "The Function" in SML *} -
~ |subsection{* Apotheosis *} ML{* fun fac n = if n=0 then 1 else n * fac(n-! %
ML{* fac S0*} =
- b subsection{* Using the code-generator to SML *} =
w |text{* It may be necessary to get used to the PIDE - Paradigm:

, , , =
always checking whenever typing. After a while, however, =
one gets used to it. Don't forget to save from time to time !!! *} %

v

i

w -

S

B «

tput | Sledgehammer Symbols

ubsection{* Using the code-generator to SML *}

31,12 (798/909)

(isabelle,sidekick, ,UTF-8-Isabelle)

Demo 1

8 00

| demol.thy (modified)

Sidekick Panel
[Documentatio
Panel |
Theories Panel

w |text{* It may be necessary to get used to the PIDE - Paradigm:

| m demol.thy (~fu-psud/fortesse/pub/presentations/2014-14-9-isabelle-tutorial /bu_sol... % |

transcription, so “alpha is just equal to ‘<alpha= but
can also be written a.

Only in few cases one has to memorize. For them,
ASCII - oriented shortcuts like = can be given for ==.

*}

+ |subsection{* Apotheosis *}

always checking whenever typing. After a while, however,
one gets used to it. Don't forget to save from time to time !!! *}

= |subsection{* "The Function" in SML *}

ML{* fun fac n = if n=0 then 1 else n * fac(n-1) *}

ML{* fac 50*}

subsection{* Using the code-generator to SML *}

value "(2::nat) + 2"

| Detach | |100%

] M Auto update | Update |

val it =
3041405320171337804361260816606475884437764156896051 2000000000000: int

B ~ Find | Qutput | Sledgehammer Symbols

e
@ | isabelle =
%]
Filter | %C,
b d
demol
v d g
theory demol S
section{* My very first experiments *} &
» subsection{* Thesis #} B
» subsection{* Apotheosis *} E'
¥ subsection{* "The Function" in SML #}
. [
ML{* fun fac n = if n=0 then 1 else n * f o
ML{+ fac 50%} ‘ %
. . [l
b subsection{* Using the code-generator to SML * =
-
=
m
2
=,
v

i w

-

subse

ion{* Using the code-generator

SML *}

31,12 (798/909)

(isabelle,side

UTF-8-Isabelle) B 14:11 |

Exercises

o Start Isabelle
(via the PIDE/jEdit: isabelle jedit demol.thy)

» Explore Demol.thy: Set output window, modify texts
and value-computations, ML-code.

 Browse ,Editor.thy";
e Edit a (brief) document with mathematical notation.

* Edit and evaluate a small SML program
(see http://en.wikipedia.org/wiki/Standard_ML
as primer)

Parallel
Nano-Kernel
LCF-Archi-
tecture

1n the

iEdit - GUI
(PIDE)

fine-grained,
asynchronous
parallelism

(Isabelle2009-2)

P o T

Example.thy {(modified)

| B Example.thy (~/tmp/)

theory Example
imports Main
begin

inductive path for rel :: "'a = 'a = bool" where
base: "path rel x x"
| step: "rel x y = path rel y z = path rel x z"

theorem example:
fixes x z :: 'a assumes "path rel x z" shows "P x z"
using assms
proof induct
case (base x)
show "P x x" by auto
next
case (step x y z)
note rel x y and "path rel y z
moreover note P y z°
ultimately show "P x z" by auto
ged

end

16,20 (318/422) (isabelle,none,UTF-8-lsabelle)- - - - UCGKEEB/554Mb 1:41 PM

[]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

