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What we will talk about



What we will talk about

Isabelle with:

Its System Framework

the Logical Framework

the Isabelle/HOL Environment

Proof Contexts and Structured Proof
Tactic Proofs (“apply style”)



The Isabelle
System Framework



Isabelle Architecture

® Modern Isabelle Architecture
consists of 5 identifyable layers

SML layer

Kernel & Proof Object Layer

Tactic Layer and decision procedures
Isar Engine

PIDE Framework and Interface Layer



Isabelle Architecture

* Observation:
Effective parallelization is a PERVASIVE PROBLEM,
that must be addressed

multi-core PolySML
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Isabelle Architecture

* In detail:

on the execution platform layer



Isabelle Architecture

* In detail:

on the kernel layer —
multi-core PolySML
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Isabelle Architecture

* In detail:

on layer of procedures and
packages

multi-core PolySML
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Isabelle Architecture

* In detail:

on the interface layer :>_
PIDE framework + Editor

multi-core PolySML
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PIDE - GUI - Architecture

(see PIDE - Project: http://bitbucket.org/pide/pide/wiki/Manifesto)
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What is Isabelle as a System ?

* A Document Processor

®* .. where documents have a unique name

* ... may acyclicly import documents

* .. and consists of an command sequence

* .. Where new commands may be intro-duced

on the fly (i.e. the system framework is extensible).

* A session (a collection of documents organized in
a hierachy) may be “frozen” to a session (or
configuration)



What is Isabelle as a System ?
* Global View of a “session”
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What is Isabelle as a System ?
* Global View
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What is Isabelle as a System ?

* Document “positions” were evaluated to an
implicit state, the theory context ©
Document / A [ omd
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What is Isabelle as a System ?

* Document “positions” were evaluated to an
implicit state, the theory context ©

DocumeL A cmd Note;:
“Theony< — stateless command
- evaluation! No-side-

d
— effects apart from “state”

| \ managed by Isabelle !!!
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What is Isabelle as a System ?

* Document “positions” were evaluated to an

implicit state, the theory context ©
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What is Isabelle as a System ?

* Document “positions” were evaluated to an
implicit state, the theory context ©
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What is Isabelle as a System ?
* Example

theory D
imports B C
begin

section{* First Section *}
text{* Some mathematical text: @{text \<alpha>}."}
ML{* fun fac x = if x = 0 then 1 else x*fac(x-1) *}

ML{* fac 10 *}
end



What is Isabelle as a System ?
* Example

‘theory D
imports B C
begin

section{* First Section *}

text{® Some mathematical text: @{text \<alpha>}."}

ML{* fun fac x = if x = 0 then 1 else x*fac(x-1) *}
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What is Isabelle as a System ?
* Example

‘theory D
imports B C
begin

section{* First Section *}

text{® Some mathematical text: @{text \<alpha>}."}

ML{* fun fac x = if x = 0 then 1 else x*fac(x-1) *}

ML{* fac10 *} . “fac” visible here because the
end M environment 1s part of © !!




Demo 1

* Start Isabelle (via the PIDE jEdit)
* Browse ,, demol.thy"

e Commands:
text, section, subsection
ML

value

a browser for theorems: find__theorems
* Capabilities:

— hovering, jump-link,



Demo 1

® 00 | demol.thy (modified)

| m demol.thy (~fu-psud/fortesse/pub/presentations/2014-14-9-isabelle-tutorial /bu_sol... % | @ | isabelle ol

transcription, so “alpha is just equal to ‘<alpha= but = || | % (X
1ter: ")

can also be written a. - <

demol.thy

, , v demol E

Only in few cases one has to memorize. For them, A

) . ) theory demol £

ASCII - oriented shortcuts like = can be given for ==, v section{* My very first experiments *} 3

=1

b subsection{* Thesis *} B

ik » subsection{* Apotheosis *} E'

¥ subsection{* "The Function" in SML *}

~ |subsection{* Apotheosis *} ML{* fun fac n = if n=0 then 1 else n * fac(n-!

ML{* fac 50%}
b subsection{* Using the code-generator to SML *}

w |text{* It may be necessary to get used to the PIDE - Paradigm:
always checking whenever typing. After a while, however,
one gets used to it. Don't forget to save from time to time !!! *}

= |subsection{* "The Function" in SML *}

ML{* fun fac n = if n=0 then 1 else n * fac(n-1) *}
ha ML{* fac SO*}

w |subsection{* Using the code-generator to SML *}

value "(2::nat) + 2"

M Auto update | Update | | Detach | [100% B

val it =
3041405320171337804361260816606475884437764156896051 2000000000000: int

i w -

subsection{* Using the code-generator to SML *}

B ~ Find | Qutput | Sledgehammer Symbols

31,12 (798/909) (isabelle,sidekick, ,UTF-8-Isabelle)
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Demo 1
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Exercises

o Start Isabelle
(via the PIDE/jEdit: isabelle jedit demol.thy)

» Explore Demol.thy: Set output window, modify texts
and value-computations, ML-code.

 Browse ,Editor.thy";
e Edit a (brief) document with mathematical notation.

* Edit and evaluate a small SML program
(see http://en.wikipedia.org/wiki/Standard_ML
as primer)



Parallel
Nano-Kernel
LCF-Archi-
tecture

1n the

iEdit - GUI
(PIDE)

fine-grained,
asynchronous
parallelism

(Isabelle2009-2)

P o T

Example.thy {(modified)

| B Example.thy (~/tmp/)

theory Example
imports Main
begin

inductive path for rel :: "'a = 'a = bool" where
base: "path rel x x"
| step: "rel x y = path rel y z = path rel x z"

theorem example:
fixes x z :: 'a assumes "path rel x z" shows "P x z"
using assms
proof induct
case (base x)
show "P x x" by auto
next
case (step x y z)
note rel x y and "path rel y z
moreover note P y z°
ultimately show "P x z" by auto
ged

end

16,20 (318/422) (isabelle,none,UTF-8-lsabelle)- - - - UCGKEEB/554Mb 1:41 PM
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